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Abstract The elastodynamic behavior of waves in a thermo-microstretch elastic
homogeneous isotropic plate bordered with layers of inviscid liquid on both sides sub-
jected to stress-free thermally insulated and isothermal conditions is investigated in
the context of Lord and Shulman and Green and Lindsay theories of thermoelasticity.
The mathematical model has been simplified by using the Helmholtz decomposition
technique, and the frequency equations for different mechanical situations are obtained
and discussed. The special cases such as short wavelength waves and regions of the
secular equations are also discussed. Finally, the numerical solution is carried out for
a magnesium crystal composite material plate bordered with water. The dispersion
curves, attenuation coefficients, amplitudes of dilatation, microrotation, microstretch,
and temperature distribution for the symmetric and skew-symmetric wave modes are
presented graphically.
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1 Introduction

The theory of microstretch elastic solids has been introduced by Eringen [1–3]. This
theory is a special case of the micromorphic theory. In the framework of micromorphic
theory, a material point is endowed with three deformable directors. When the direc-
tors are constrained to have only breathing-type microdeformations, then the body is
a microstretch continuum [3]. The material points of these continua can stretch and
contract independently of their translations and rotations. The theory is expected to
find applications in the treatment of the mechanics of composite materials reinforced
with chopped fibers and various porous materials. Theory of microstretch continua is
a generalization of the theory of micropolar continua.

Eringen [2] developed the theory of thermo-microstretch elastic solids. Eringen [4]
also derived the equations of motions, constitutive equations, and boundary conditions
for thermo-microstretch fluids and obtained the solution of the problem for acoustical
waves in bubbly liquids. A microstretch continuum is a model for a Bravais lattice with
its basis on the atomic level and two-phase dipolar solids with a core on the macro-
scopic level. Composite materials reinforced with chopped elastic fibers, porous media
whose pores are filled with gas or inviscid liquid, asphalt, or other elastic inclusions
and solid–liquid crystals, etc., are examples of microstretch solids.

During the last four decades, wide spread attention has been given to thermoelas-
ticity theories which admit a finite speed for the propagation of a thermal field. Lord
and Shulman [5] reported a new theory based on a modified Fourier’s Law of heat
conduction with one relaxation time. A more rigorous theory of thermoelasticity by
introducing two relaxation times has been formulated by Green and Lindsay (G-L) [6].

Schoch [7] investigated the effect of an inviscid liquid on the propagation of Lamb
waves. When a plate of finite thickness is bordered with a half-space homogeneous
liquid on both sides, part of the Lamb wave energy in the plate is coupled into the
liquid as radiation; most of the energy is still in the solid. This type of disturbance is
called the leaky Lamb wave. Schoch derived the dispersion relations for leaky Lamb
waves for an isotropic plate and an inviscid liquid.

For a thin plate, the zeroth-order anti-symmetrical mode (a0 mode) Lamb wave is
often called the flexural or bending wave. Kurtze and Bolt [8] derived a dispersion
equation for bending waves when a plate is in contact with inviscid fluid based on
the acoustic impedance concept. Watkins et al. [9] calculated the attenuation of Lamb
waves in the presence of an inviscid liquid using an acoustic impedance method. Wu
and Zhu [10] studied the propagation of Lamb waves in a plate bordered with an invis-
cid liquid layer on both sides. The dispersion equations of this case were derived and
solved numerically. Zhu and Wu [11] derived the dispersion equations of the Lamb
waves of a plate bordered with a viscous liquid layer or half-space viscous liquid on
both sides. Sharma et al. [12,13] derived the dispersion equations of Lamb waves in
homogeneous isotropic and transversely isotropic thermoelastic plate bordered with
an inviscid liquid layer or half-space on both sides.

The aim of this article is to study the elastodynamic behavior of waves in an infinite
homogeneous isotropic thermo-microstretch elastic plate of thickness 2d bordered
with a layer of inviscid liquid on both sides in the context of generalized theories of
thermoelasticity.
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2 Basic Equations

The equations of motion and the constitutive relations in a homogeneous isotropic
thermo-microstretch elastic solid in the absence of body forces, body couples, stretch
force, and heat sources are given by Eringen [3], Lord and Shulman [5], and Green
and Lindsay [6].

(λ+ 2µ+ K )∇(∇ · �u)− (µ+ K )∇ × ∇ × �u + K∇ × �ϕ
−ν (1 + τ1

∂
∂t

)∇T + λ0∇ϕ∗ = ρ ∂
2 �u
∂t2 , (1)

(α + β + γ )∇(∇ · �ϕ)− γ∇ × (∇ × �ϕ)+ K∇ × �u − 2K
⇀
ϕ = ρ j ∂

2 �ϕ
∂t2 , (2)

α0∇2ϕ∗ + ν1
(
T + τ1

∂T
∂t

)− λ1ϕ
∗ − λ0∇ · �u = ρ j0

2
∂2ϕ∗
∂t2 , (3)

K ∗∇2T = ρC∗
(
∂T
∂t + τ0

∂2T
∂t2

)

+ νT0

(
∂
∂t + η0τ0

∂2

∂t2

)
(∇ · �u)+ ν1T0

(
∂
∂t + η0τ0

∂2

∂t2

)
ϕ∗, (4)

ti j = λur,rδi j + µ(ui, j + u j,i )+ K (u j,i − εi jrϕr )− ν
(
T + τ1

∂T
∂t

)
δi j

+ λ0δi jϕ
∗, (5)

mi j = αϕr,rδi j + βϕi, j + γ ϕ j,i + b0εmjiϕ
∗
,m, λ∗

i = α0ϕ
∗
,i + b0εi jmϕ j,m, (6)

where λ,µ, α, β, γ, K , α0, λ0, λ1, and b0 are material constants, ρ is the density,
j is the microinertia, j0 is the microinertia of microelements, ti j and mi j are the
components of stress and couple stress tensors, respectively, �u = (ur , uθ , uz) is the
displacement vector, �ϕ = (ϕr , ϕθ , ϕz) is the microrotation vector, ϕ∗ is the scalar
point microstretch function, λ∗

i is the microstress tensor, T is the temperature change,
T0 is a uniform temperature, ν = (3λ+2µ+ K )αt1, ν1 = (3λ+2µ+ K )αt2 , αt1 , and
αt2 are the coefficients of linear thermal expansion, K ∗ is the coefficient of thermal
conductivity, C∗ is the specific heat at constant strain, and δi j is the Kronecker delta.
The comma notation denotes spatial derivatives.

3 Formulation of the Problem

We consider an infinite homogeneous isotropic, thermally conducting microstretch
elastic plate of thickness 2d initially at a uniform temperature T0. The plate is bor-
dered both on the top and bottom with homogeneous inviscid liquid layers of thickness
h (if h → ∞, it becomes the leaky Lamb wave-type case). The plate is axi-symmetric
with respect to the z-axis as the axis of symmetry. The circular cylindrical coordi-
nates (r, θ, z) have been used to describe the response of the plate. The origin of the
co-ordinate system (r, θ, z) is taken at any point in the middle surface of the plate
and the z-axis normal to it along the thickness. We take the r–z plane as the plane of
incidence.

For a two-dimensional problem, we take

�u = (ur , 0, uz), �ϕ = (0, ϕθ , 0), and �uL = (uL, 0, wL). (7)
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We define the dimensionless quantities,

r ′ = ω∗r

c1
, z′ = ω∗z

c1
, u′

r = ρω∗c1

νT0
ur , u′

z = ρω∗c1

νT0
uz, t ′ = ω∗t,

ϕ′
θ = ρc2

1

νT0
ϕθ , ϕ

∗′ = ρc2
1

νT0
ϕ∗, T ′ = T

T0
, τ ′

1 = ω∗τ1

τ ′
0 = ω∗τ0, t ′i j = 1

νT0
ti j , m′

i j = ω∗mi j

c1νT0
, h′ = c1h

ω∗ , p = K

ρc2
1

,

p1 = λ1

ρc2
1

, p0 = λ0

ρc2
1

, δ2 = c2
2

c2
1

, δ2
1 = c2

3

c2
1

,

δ2
2 = c2

4

c2
1

, c2
L = λL

ρL
, δ2

L = c2
L

c2
1

, ν̄ = ν1

ν
, u′

L = ρLω
∗c1

νT0
uL,

w′
L = ρLω

∗c1

νT0
wL, δ∗2 = K c2

1

γω∗ , δ∗1 = ρc4
1

α0ω∗2 ,

ω∗ = ρC∗c2
1

K ∗ , λ∗′
i = λ∗

i ω
∗

c1νT0
, (8)

where c2
1 = λ+2µ+K

ρ
, c2

2 = µ+K
ρ
, c2

3 = γ
ρ j , c2

4 = 2α0
ρ j0
, ∈ = ν2T0

ρ2C∗c2
1
, ω∗ is the

characteristic frequency of the medium, cL is the velocity of sound in the liquid, ρL is
the density of the liquid, λL is the bulk modulus, and ∈ is the thermoelastic coupling
constant.

For the liquid half-space, the equation of motion and constitutive relation are given
by

λL∇(∇.�uL) = ρL
∂2 �uL

∂t2 , (9)
(
ti j
)

L = λL(ur,r )Lδi j . (10)

In the solid, we introduce the potential functions ϕ and ψ through the relations,

ur = ∂ϕ

∂r
+ ∂ψ

∂z
, uz = ∂ϕ

∂z
− ∂ψ

∂r
− ψ

r
, (11)

where ϕ and ψ are the velocity potential functions of longitudinal and shear waves.
In the liquid boundary layers, we have

uLi = ∂ϕLi

∂r
+ ∂ψLi

∂z
and wLi = ∂ϕLi

∂z
− ∂ψLi

∂r
− ψLi

r
, i = 1, 2, (12)

where ϕLi and ψLi are, respectively, the scalar velocity potential and vector velocity
component along the θ -direction, for the top liquid layer (i = 1) and for the bottom
liquid layer (i = 2), uLi and wLi are, respectively, the r and z components of the
particle velocity.
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Using Eqs. 7, 8, 11, and 12 in Eqs. 1–4 and 9, we obtain

(
∇2 − ∂2

∂t2

)
ϕ + p0ϕ

∗ −
(

T + τ1
∂T

∂t

)
= 0, (13)

(
∇2ψ − ψ

r2

)
− pϕθ

δ2 − 1

δ2

∂2ψ

∂t2 = 0, (14)

(
∇2 − 1

r2

)
ϕθ + δ∗2

(
∇2 − 1

r2

)
ψ − 2δ∗2

ϕθ − 1

δ2
1

∂2ϕθ

∂t2 = 0, (15)

∇2ϕ∗ − p1δ
∗
1ϕ

∗ − p0δ
∗
1∇2ϕ + ν̄δ∗1

(
T + τ1

∂T

∂t

)
− 1

δ2
2

∂2ϕ∗

∂t2 = 0, (16)

∇2T − (Ṫ + τ0T̈ ) =∈
(
∂

∂t
+ η0τ0

∂2

∂t2

)
∇2ϕ̇ + ν̄ ∈

(
∂

∂t
+ η0τ0

∂2

∂t2

)
ϕ∗, (17)

∇2ϕLi − 1

δ2
L

∂2ϕLi

∂t2 = 0 i = 1, 2, (18)

where

∇2 = ∂2

∂r2 + 1

r

∂

∂r
+ ∂2

∂z2 .

3.1 Boundary Conditions

The boundary conditions at the solid–liquid interfaces z = ±d to be satisfied are as
follows:

(i) The magnitude of the normal component of the stress tensor of the plate should
be equal to the pressure of the liquid. (tzz)S = (tzz)L , implying that

∂2ϕ

∂t2 − (2δ2 − p)

(
∂2ϕ

∂r2 + 1

r

∂ϕ

∂r
+ ∂2ψ

∂r∂z

)
= ω2 ρL

ρ
ϕLi , i = 1, 2. (19)

(ii) The tangential component of the stress tensor should be zero.

(tzr )S = 0, implying that
∂2ψ

∂t2 − (2δ2 − p)

×
(
∂2ψ

∂r2 + 1

r

∂ψ

∂r
− ψ

r2 − ∂2ϕ

∂r∂z

)
= 0 (20)
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(iii) The tangential component of the couple stress tensor should be zero.

(mzθ )S = 0, implying that
∂ϕθ

∂z
= 0 (21)

(iv) The component of microstress tensor vanishes,

λ∗
z = 0 (22)

(v) The normal velocity component of the solid should be equal to that of the liquid.
(u̇z)S = (ẇ)L

This leads to
∂

∂t

(
∂ϕ

∂z
− ∂ψ

∂r
− ψ

r

)
= ∂

∂t

(
∂ϕLi

∂z

)
, i = 1, 2. (23)

(vi) The thermal boundary condition is given by

T,z + H T = 0 (24)

where H is the surface heat transfer coefficient. Here, H → 0 corresponds to thermally
insulated boundaries and H → ∞ refers to the isothermal one.

4 Formal Solution of the Problem

We assume solutions of Eqs. 13–18 of the form,

(ϕ, ψ, ϕθ , T, ϕ∗, ϕL1 , ϕL2) = [ f (z)J0(ξr), g(z)J1(ξr), w(z)J1(ξr), h(z)J0(ξr),

η(z)J0(ξr), ϕ̄L1(z)J0(ξr), ϕ̄L2(z)J0(ξr)
]

e−iωt , (25)

where c = ω/ξ is the phase velocity,ω is the circular frequency, ξ is the wave number,
and J0(ξr) and J1(ξr) are Bessel functions of order zero and one, respectively.

Using Eq. 25 in Eqs. 13–18 and solving the resulting differential equations, the
expressions for ϕ,ψ, ϕθ , T, ϕ∗, ϕL1 , and ϕL2 are obtained as

ϕ = (A1 cos m1z + A2 cos m2z + A3 cos m3z + B1 sin m1z + B2 sin m2z

+ B3 sin m3z)J0(ξr)e−iωt , (26)

ψ = (A4 cos m4z + B4 sin m4z + A5 cos m5z + B5 sin m5z)J1(ξr)e−iωt , (27)

ϕθ = δ2

p
[(b2 − m2

4)(A4 cos m4z + B4 sin m4z)+ (b2 − m2
5)(A5 cos m5z

+ B5 sin m5z)J1(ξr)e−iωt , (28)

T = [S1(A1 cos m1z + B1 sin m1z)+ S2(A2 cos m2z + B2 sin m2z)

+ S3(A3 cos m3z + B3 sin m3z)]J0(ξr)e−iωt , (29)
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ϕ∗ = [V1(A1 cos m1z + B1 sin m1z)+ V2(A2 cos m2z + B2 sin m2z)

+ V3(A3 cos m3z + B3 sin m3z)]J0(ξr)e−iωt , (30)

ϕL1 = A4 sin γL [z − (d + h)] J0(ξr)e−iωt , d < z < d + h, (31)

ϕL2 = A5 sin γL [z + (d + h)] J0(ξr)e−iωt , −(d + h) < z < −d, (32)

where

m2
i = ξ2(c2a2

i − 1), i = 1, 2, 3, 4, 5; a2 = ξ2(c2 − 1),

b2 = ξ2
(

c2

δ2 − 1

)
, γ 2

L = ξ2

(
c2

δ2
L

− 1

)

∑
a2

i = 1 + k0 + 1

δ2
2

− p1δ
∗
1

ω2 + p2
0δ

∗
1

ω2 − iω ∈ k1k′
0,

∑
a2

i a2
j = k0 + 1 + k0

δ2
2

− δ∗1
ω2

[
(1 + k0)p1 − p2

0k0 + iω ∈ k′
0k1(v̄ p0 − p1)

−iω ∈ k′
0k1v̄(v̄ − p0)

]
− iω ∈ k′

0k1

δ2
2

,

a2
1a2

2a2
3 = k0

(
1

δ2
2

− p1δ
∗
1

ω2

)

− ik′
0k1 ∈ δ∗1 ν̄2

ω
, a2

4 + a2
5 = 1

δ2 + 1

δ2
1

+ δ∗
(

p − 2δ2
)

ω2δ2 , a2
4a2

5 = 1

δ2

(
1

δ2
1

− 2δ∗

ω2

)

k0 = τ0 + iω−1, k′
0 = η0τ0 + iω−1, k1 = τ1 + iω−1,

Vi = −δ∗1
[
(ν̄ − p0)m2

i − ν̄ξ2
(
c2 + p0

ν̄
− 1

)]

m2
i − ξ2

[
c2

(
1
δ2

2
− δ∗1

ω2 (ν̄ p0 − p1)

)
− 1

] , i, j = 1, 2, 3

Si =

[
m2

i − ξ2(c2 − 1)
] [

m2
i − ξ2

(
c2
(

1
δ2

2
− δ∗1

ω2 (ν̄ p0 − p1)

)
− 1

)]

+δ∗1 p0
[
(ν̄ − p0)m2

i − ν̄ξ2
(
c2 + p0

ν̄
− 1

)]

iωk1

[
m2

i − ξ2

(
c2

(
1
δ2

2
− δ∗1

ω2 (ν̄ p0 − p1)

)
− 1

)]

The main difference between this case and leaky Lamb waves is that the functions
ϕL1 and ϕL2 here are chosen in such a way that the acoustical pressure is zero at
z = ±(d + h); in other words, ϕL1 and ϕL2 here are of standing wave solutions, for
leaky Lamb waves, they are traveling waves.
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5 Derivation of the Secular Equations

Using the boundary conditions, Eqs. 19–24 on the surfaces z = ±d of the plate
and using Eqs. 26–32, we obtain a system of 12 simultaneous equations which
has a non-trivial solution if the determinant of the coefficients of amplitudes
[A1, A2, A3, A4, A5, B1, B2, B3, B4, B5, A6, A7]T vanishes.

We obtain the following secular equations after applying lengthy algebraic reduc-
tions and manipulations along with the conditions γL �= 0 and γL �= (2n − 1)π2 , n =
1, 2, 3, . . . ,

[
T1

T4

]±1

− m1(V1S3 − V3S1)

m2(V2S3 − V3S2)

[
T2

T4

]±1

+ m1(V1S2 − V2S1)

m3(V2S3 − V3S2)

[
T3

T4

]±1

+ RV

SU

( f5 − f4)

(m5 f5T4 − m4 f4T5)

m1S1(V3 − V2)

m2m3(V2S3 − V3S2)

⎧
⎨

⎩

[
T2T3

T 2
4 T5

]±1

− m2S2(V3 − V1)

m1S1(V3 − V2)

[
T1T3

T 2
4 T5

]±1

+ m3S3(V2 − V1)

m1S1(V3 − V2)

[
T1T2

T 2
4 T5

]±1
⎫
⎬

⎭

+ Q

P

[m4 − m5(
T5
T4
)±1]

[m5 f5 − m4 f4(
T5
T4
)±1]

×

⎧
⎪⎪⎨

⎪⎪⎩

V
U

f5 f4(S3−S2)
(V2 S3−V3 S2)

[[
T1
T4

]±1 − m1(S3−S1)
m2(S3−S2)

[
T2
T4

]±1 + m1(S2−S1)
m3(S3−S2)

[
T3
T4

]±1
]

+ R
S

[[
T1
T4

]±1 − m1V2(V1 S3−V3 S1)
m2V1(V2 S3−V3 S2)

[
T2
T4

]±1 + m1V3(V1 S2−V2 S1)
m3V1(V2 S3−V3 S2)

[
T3
T4

]±1
]

⎫
⎪⎪⎬

⎪⎪⎭

+ ρLω
2T6

ρδ2γL

( 1
P + iξQ

P2 )

(V2S3 − V3S2)

×

⎧
⎪⎪⎨

⎪⎪⎩

S1m1(V3 − V2)
[
1+ S3(V2−V1)

S1(V3−V2)
− S2(V3−V1)

S1(V3−V2)

] [
1
T4

]±1+RV
SU

( f5− f4)V1(S3−S2)
(m5 f5T4−m4 f4T5)

×
[[

T1
T 2

4 T5

]±1

− m1V2(S3−S1)
m2V1(S3−S2)

[
T2

T 2
4 T5

]±1

+ m1V3(S2−S1)
m3V1(S3−S2)

[
T3

T 2
4 T5

]±1
]

⎫
⎪⎪⎬

⎪⎪⎭

= −Q2m1m4m5((V1 − V2)(S2 − S3)− (V2 − V3)(S1 − S2))( f5 − f4)

P2(V2S3 − V3S2)[m5 f5 − m4 f4(
T5
T4
)±1]

− Q2

P2

RV

SU

(m5 f4T4 − m4 f5T5)

(m5 f5T4 − m4 f4T5)

V1(S3 − S2)

(V2S3 − V3S2)

×
{[

T1

T4

]±1

− m1V2(S3 − S1)

m2V1(S3 − S2)

[
T2

T4

]±1

+ m1V3(S2 − S1)

m3V1(S3 − S2)

[
T3

T4

]±1
}

(33)

for stress-free thermally insulated boundaries (H → 0) of the plate.

[
T1

T4

]±1

− m1S2(V3 − V1)

m2S1(V3 − V2)

[
T2

T4

]±1

+ m1S3(V2 − V1)

m3S1(V3 − V2)

[
T3

T4

]±1
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+ RV

SU

(m5 f4T4 − m4 f5T5)

m4m5( f5 − f4)

m1(V2S3 − V3S2)

m2m3S1(V3 − V2)

{[
T2T3

T4

]±1

− m2(V1S3 − V3S1)

m1(V2S3 − V3S2)

[
T1T3

T4

]±1

+ m3(V1S2 − V2S1)

m1(V2S3 − V3S2)

[
T1T2

T4

]±1
}

+ P

Q

(m4T5 − m5T4)

m4m5( f5 − f4)

×

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

U
V

m1 f5 f4(S3−S2)
m2m3 S1(V3−V2)

[[
T2T3

T4

]±1 − m2(S3−S1)
m1(S3−S2)

[
T1T3
T4

]±1 + m3(S2−S1)
m1(S3−S2)

[
T1T2

T4

]±1
]

+ R
S

m1V1(V2 S3−V3 S2)
m2m3 S1(V3−V2)

⎡

⎢
⎣

[
T2T3

T4

]±1 − m2V2(V1 S3−V3 S1)
m1V1(V2 S3−V3 S2)

[
T1T3
T4

]±1

+m3V3(V1 S2−V2 S1)
m1V1(V2 S3−V3 S2)

[
T1T2

T4

]±1

⎤

⎥
⎦

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

+ ρLω
2T6

ρδ2γLm4m5

(
P

Q2 + iξ
Q

)

(V2S3 − V3S2)

×

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(m5 f5T4−m4 f4T5)
( f5− f4)

[[
T1
T4

]±1 − m1 S2(V3−V1)
m2 S1(V3−V2)

[
T2
T4

]±1 + m1 S3(V2−V1)
m3 S1(V3−V2)

[
T3
T4

]±1
]

+ RV
SU

m1(V2 S3−V3 S2)
m2m3 S1(V3−V2)

⎡

⎢⎢
⎣

[
T2T3
T 2

4 T5

]±1

− m2(V1 S3−V3 S1)
m1(V2 S3−V3 S2)

[
T1T3
T 2

4 T5

]±1

+m3(V1 S2−V2 S1)
m1(V2 S3−V3 S2)

[
T1T2
T 2

4 T5

]±1

⎤

⎥⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=
V2(S3 − S1)

[
1 − m4 f4

m5 f5
(

T5
T4
)±1
]

f5 P2

Q2m3m4S1(V3 − V2)( f5 − f4)

⎧
⎨

⎩

[
T1T3

T 2
4

]±1

− m1V1(S3 − S2)

m2V2(S3 − S1)

[
T2T3

T 2
4

]±1

− m3V3(S2 − S1)

m2V2(S3 − S1)

[
T1T2

T 2
4

]±1
⎫
⎬

⎭

+ P2

Q2

RV

SU

S2(V3 − V1)

S1(V3 − V2)m2m3m4m5

[
T1T2T3

T 2
4 T5

]±1

×
{

1 − S1(V3 − V2)

S2(V3 − V1)
− S3(V2 − V1)

S2(V3 − V1)

}
(34)

for stress-free isothermal boundaries (H → ∞) of the plate, where

P = b2 − ξ2 + pξ2

δ2 , Q = −2ξ
(

1 − p

2δ2

)
, fi = b2 − m2

i , i = 4, 5;

R = iξb0, S = γ δ2

p
, U = α0, V = b0iξδ2

p
,

Ti = tan mi d, i = 1, 2, 3, 4, 5; T6 = tan γLh.
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Here the superscript +1 refers to skew-symmetric and −1 refers to symmetric modes.
Equations 33 and 34 are the most general dispersion relations involving the wave
number and phase velocity of various modes of propagation in thermo-microstretch
elastic plates bordered with layers of inviscid liquid on both sides. These equations
can be recognized as modified Rayleigh–Lamb equations which, respectively, govern
the symmetric and antisymmetric modes of wave propagation for stress and cou-
ple stress-free, thermally insulated and isothermal thermo-microstretch elastic plate.
We refer to such waves as thermo-microstretch elastic plate waves rather than Lamb
waves whose properties were derived by Lamb [14] for isotropic elastic solids in elast-
okinetics. Thus, Rayleigh–Lamb type equation also governs circular-crested thermo-
microstretch elastic waves in a plate. Although the frequency wave number relationship
holds whether the waves are straight or circularly crested, the displacement, micro-
rotation, temperature, microstretch, and stresses vary according to Bessel functions
rather than trigonometric functions as far as the radial coordinate is concerned. For
large value of r , we have

J0(ξr) → sin ξr + cos ξr√
πξr

, J1(ξr) → sin ξr − cos ξr√
πξr

.

Thus, far from the origin, the motion becomes periodic in r. Actually, “far” occurs
rather rapidly, within four to five zeros of the Bessel function. As r becomes very
large, the straight crested behavior is the limit of the circular-crested waves.

If we let ρL approach zero, Eqs. 33 and 34 recover the dispersion equations for
Lamb-type waves of free boundaries in a thermo-microstretch elastic plate.

5.1 Particular Cases

(a) Thermo-microstretch elastic plate with one relaxation time [Lord and Shulman
(L-S) theory]
In this case, τ1 = 0, τ0 > 0, and η0 = 1.

(b) Thermo-microstretch elastic plate with two relaxation times (G-L theory)
In this case, τ1 ≥ τ0 > 0, and η0 = 0.

(c) Micropolar thermoelastic plate
In this case, α0 = λ1 = b0 = λ0 = 0.

6 Regions of the Secular Equation

To explore various regions of the secular equations, we consider Eq. 33 as an example
for the purpose of discussion. Depending upon whether m1,m2,m3,m4,m5, b, and
γL are real, purely imaginary, or complex, the frequency equations, Eqs. 33 and 34,
are correspondingly altered as follows.
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6.1 Region I

When the characteristic roots are of the type, a2 = −a′2, β2 = −β ′2,m2
k = −α2

k , k =
1, 2, 3, 4, 5 so that a = i a′, b = i b′, γL = iγ ′

L, and mk = i αk, k = 1, 2, 3, 4, 5 are
purely imaginary or complex numbers. This ensures that the superposition of partial
waves has the property of exponential decay. In this case, the secular equations are
written from Eqs. 33 and 34 by replacing circular tangent functions of mk, γL; k =
1, 2, 3, 4, 5 with hyperbolic tangent functions of αk, γ

′
L; k = 1, 2, 3, 4, 5.

6.2 Region II

This region is characterized by δ < c < 1. In this case, we have b = b, γL = γL,m4 =
m4,m5 = m5, a = i a′,mk = i αk, (k = 1, 2, 3) and the secular equations can be
obtained from Eqs. 33 and 34 by replacing circular tangent functions of mk , k = 1, 2, 3
with hyperbolic tangent functions of αk, k = 1, 2, 3.

6.3 Region III

In this case, the characteristic roots are given by m2
k, k = 1, 2, 3, 4, 5 and the secular

equation is given by Eqs. 33 and 34.

7 Waves of Short Wavelength

Some information on the asymptotic behavior is obtained by letting ξ → ∞; tanh αi d
tanh α j d

→ 1, tanh γLh
tanh α j d → 1, i = 1, 2, 3, j = 4, 5. If we take ξ > ω

δ
, it follows that c < δ, 1. In

this case, the roots of the secular equation lie in Region I and we replace a, b, γL, and
mk with i a′, ib′, iγ ′

L, and iαk, k = 1, 2, 3, 4, 5, respectively, so that secular equations
33 and 34 reduce to

(
b′2 − α2

4 − α2
5 − α4α5

) [
α2α3(V

′
2S′

3 − V ′
3S′

2)− α1α3(V
′
1S′

3 − V ′
3S′

1)

+α1α2(V
′
1S′

2 − V ′
2S′

1)
]

+ RV

SU
(α4 + α5)

[
α1S′

1(V
′
3 − V ′

2)− α2S′
2(V

′
3 − V ′

1)+ α3S′
3(V

′
2 − V ′

1)
]

+ QV

PU

{
α2

4α
2
5 − b′2(α2

4 + α2
5 − b′2)

} [
α3α2(S

′
3 − S′

2)− α1α3(S
′
3 − S′

1)

+α1α2(S
′
2 − S′

1)
]

+ Q R

P S

[
α2α3V ′

1(V
′
2S′

3 − V ′
3S′

2)− α1α3V ′
2(V

′
1S′

3 − V ′
3S′

1)

+α1α2V ′
3(V

′
1S′

2 − V ′
2S′

1)
]

+ ρLω
2

ρδ2γ ′
L

(
1

P
+ iξQ

P2

)[
α1α2α3

[
(V ′

1 − V ′
2)(S

′
2 − S′

3)− (V ′
2 − V ′

3)(S
′
1 − S′

2)
]
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+ RV

SU
(α4 + α5)

[
α3α2V ′

1(S
′
3 − S′

2)− α1α3V ′
2(S

′
3 − S′

1)+ α1α2V ′
3(S

′
2 − S′

1)
]]

= − Q2(α4α5 − b′2)
P2

RV

SU

[
α3α2V ′

1(S
′
3 − S′

2)− α1α3V ′
2(S

′
3 − S′

1)

+α1α2V ′
3(S

′
2 − S′

1)
]

− Q2

P2 α1α2α3α4α5(α4 + α5)
[
(V ′

1 − V ′
2)(S

′
2 − S′

3)− (V ′
2 − V ′

3)(S
′
1 − S′

2)
]

(35)
[
α2α3S′

1(V
′
3 − V ′

2)− α1α3S′
2(V

′
3 − V ′

1)+ α1α2S′
3(V

′
2 − V ′

1)
]

+ RV

SU

(b2 − α4α5)

α4α5(α4 + α5)

[
α1(V

′
2S′

3 − V ′
3S′

2)− α2(V
′
1S′

3 − V ′
3S′

1)

+α3(V
′
1S′

2 − V ′
2S′

1)
]

+ PU

QV

{
α2

4α
2
5 − b′2 (α2

4 + α2
5 − b′2)}

α4α5(α4 + α5)

[
α1(S

′
3 − S′

2)− α2(S
′
3 − S′

1)

+α3(S
′
2 − S′

1)
]

+ ρLω
2

ρδ2γ ′
Lα4α5

(
P

Q2 + iξ

Q

)

×

⎧
⎪⎨

⎪⎩

(α2
4+α2

5+α4α5−b′2)
(α4+α5)

[
α2α3S′

1(V
′
3 − V ′

2)− α1α3S′
2(V

′
3 − V ′

1)

+α1α2S′
3(V

′
2 − V ′

1)
]

+ RV
SU

[
α1(V ′

2S′
3 − V ′

3S′
2)− α2(V ′

1S′
3 − V ′

3S′
1)+ α3(V ′

1S′
2 − V ′

2S′
1)
]

⎫
⎪⎬

⎪⎭

+ P R

QS

{
α2

4α
2
5 − b′2 (α2

4 + α2
5 − b′2)}

α4α5(α4 + α5)

[
α1V ′

1(V
′
2S′

3 − V ′
3S′

2)

−α2V ′
2(V

′
1S′

3 − V ′
3S′

1)+ α3V ′
3(V

′
1S′

2 − V ′
2S′

1)
]

= [
α2V ′

2(S
′
3 − S′

1)− α3V ′
3(S

′
2 − S′

1)− α1V ′
1(S

′
3 − S′

2)
]

× P2(b′2 − α2
4 − α2

5 − α4α5)

Q2α4α5(α4 + α5)

+ P2

Q2α4α5

RV

SU
[V ′

1(S
′
3 − S′

2)− V ′
2(S

′
3 − S′

1)+ V ′
3(S

′
2 − S′

1)]. (36)

Equations 35 and 36 are, respectively, the Rayleigh surface wave equations for a stress
and couple stress free thermally insulated and isothermal, thermo-microstretch elastic
half-space bordered with inviscid liquid layers.

8 Amplitudes of Dilatation, Microrotation, Microstretch, and Temperature

In this section, the amplitudes of dilatation, microrotation, microstretch, and tempera-
ture distribution for symmetric and skew-symmetric modes of plate waves have been
computed for a stress-free thermo-microstretch elastic plate. Upon using Eqs. 11 and
26–30, we obtain
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(e)sym = −
{
(ξ2 + m2

1) cos m1z + L(ξ2 + m2
2) cos m2z

+ M(ξ2 + m2
3) cos m3z

}
A1 J0(ξr)e−iωt ,

(e)asym =
{
(ξ2 + m2

1) sin m1z + L ′(ξ2 + m2
2) sin m2z

+ M ′(ξ2 + m2
3) sin m3z

}
B1 J0(ξr)e−iωt ,

(ϕθ )sym = δ2

p

{
(b2 − m2

4) cos m4z − (b2 − m2
5)

f4m4s4

f5m5s5
cos m5z

}
A4 J1(ξr)e−iωt ,

(ϕθ )asym = δ2

p

{
(b2 − m2

4) sin m4z − (b2 − m2
5)

f4m4C4

f5m5C5
sin m5z

}
B4 J1(ξr)e−iωt ,

(ϕ∗)sym = {V1 cos m1z + V2L cos m2z + V3 M cos m3z} A1 J0(ξr)e−iωt ,

(ϕ∗)asym = {
V1 sin m1z + V2L ′ sin m2z + V3 M ′ sin m3z

}
B1 J0(ξr)e−iωt

(T )sym = {S1 cos m1z + S2L cos m2z + S3 M cos m3z} A1 J0(ξr)e−iωt ,

(T )asym = {
S1 sin m1z + S2L ′ sin m2z + S3 M ′ sin m3z

}
B1 J0(ξr)e−iωt ,

where

L = (V3S1 − V1S3)m1s1

(V2S3 − V3S2)m2s2
, L ′ = (V3S1 − V1S3)m1C1

(V2S3 − V3S2)m2C2
,

M = (V1S2 − V2S1)

(V2S3 − V3S2)

m1s1

m3s3
, M ′ = (V1S2 − V2S1)

(V2S3 − V3S2)

m1C1

m3C3
,

si = sin mi d,Ci = cos mi d, i = 1, 2, 3, 4, 5.

9 Numerical Results and Discussion

With the view of illustrating theoretical results obtained in the preceding sections and
comparing these in the context of various theories of thermoelasticity, we now present
some numerical results for magnesium crystal (thermo-microstretch elastic solid), the
physical data for which is given below.

Micropolar parameters are

ρ = 1.74 × 103 kg · m−3, λ = 9.4 × 1010 N · m−2, µ = 4.0 × 1010 N · m−2,

K = 1.0 × 1010 N · m−2, γ = 0.779 × 10−9 N, j = 0.2 × 10−19 m2,

j0 = 0.185 × 10−19 m2

Thermal parameters are

τ0 = 6.131 × 10−13 s, τ1 = 8.765 × 10−13 s, ∈= 0.028, T0 = 298 K,

C∗ = 1.04 × 103 J · kg−1 · K−1, K ∗ = 1.7 × 106 J · m−1 · s−1 · K−1,

ν = 2.68 × 106 N · m−2 · K−1, ν1 = 2.0 × 106 N · m−2 · K−1
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and stretch parameters are

λ0 = 0.5 × 1010 N · m−2, λ1 = 0.5 × 1010 N · m−2, α0 = 0.779 × 10−9 N,

b0 = 0.5 × 10−09 N, d = 0.01 m.

The liquid taken for the purpose of numerical calculations is water, and the speed of
sound in water is given by cL = 1.5 × 103 m · s−1.

A FORTRAN program has been developed for the solution of Eqs. 33 to compute
the phase velocity c for different values of n by using the relations, tan θ = tan(nπ+θ)
and m2

i = ξ2(c2a2
i − 1).

In general, the wave number and phase velocity of the waves are complex quantities;
therefore, the waves are attenuated in space. If we write

c−1 = s−1 + iω−1q (37)

then ξ = K1 + i q, where K1 = ω/s and q are real numbers. This shows that s is the
propagation speed and q is the attenuation coefficient of waves. Upon using Eq. 37
in the FORTRAN program developed for the solution of Eq. 33 to compute the phase
velocity c, the attenuation coefficient q for different modes of wave propagation can
be obtained.

The dimensionless phase velocity and attenuation coefficient of symmetric and
skew-symmetric modes of wave propagation in the context of L-S and G-L theories of
thermoelasticity have been computed for various values of a dimensionless wave num-
ber from dispersion Eq. 33, for a stress-free thermo-microstretch elastic plate bordered
with layers of inviscid liquid on both sides and have been represented graphically for
different modes (n = 0 to n = 2) in Figs. 1, 2, 3, and 4. The amplitudes of dila-
tation, microrotation, microstretch, and temperature distribution for symmetric and
skew-symmetric modes in the context of L-S and G-L theories of thermoelasticity are
presented graphically in Figs. 5, 6, 7, 8, 9, 10, 11, and 12. The broken lines correspond
to the L-S theory, and solid curves correspond to the G-L theory of thermoelasticity.

9.1 Phase Velocity

The phase velocities of higher modes of propagation, symmetric, and skew-symmetric
attain quite large values at a vanishing wave number which sharply slashes down to
become steady and asymptotic to the reduced Rayleigh wave velocity with an increas-
ing wave number.

It is observed from Fig. 1 that (i) for the lowest symmetric mode n = 0, the phase
velocity for the G-L theory is quite less than in the case of the L-S theory for a wave
number ξ ≤ 3.2, the phase velocity for G-L theory is slightly more than in the case
of the L-S theory for a wave number between 3.2 and 4.2, phase velocity profiles in
respect of L-S and G-L theories coincide for wave number ξ ≥ 4.2 and (ii) phase
velocity profiles in respect of L-S and G-L theories coincide for first and second
symmetric (n = 1 and n = 2) modes.
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Wave number
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Fig. 1 Variation of phase velocity of symmetric modes of wave propagation (for L-S theory, τ1 = 0, τ0 > 0,
and η0 = 1, and for G-L theory, τ1 ≥ τ0 > 0, and η0 = 0)
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Fig. 2 Variation of attenuation coefficient of symmetric modes of wave propagation (for L-S theory,
τ1 = 0, τ0 > 0, and η0 = 1, and for G-L theory, τ1 ≥ τ0 > 0, and η0 = 0)

For skew-symmetric modes of wave propagation, we observe from Fig. 3 the fol-
lowing: (a) for n = 0, the phase velocity for the G-L theory is more than in the case
of the L-S theory for wave number ξ ≤ 0.8; the phase velocity for the G-L theory
is less than in the case of the L-S theory for a wave number between 0.8 and 2.2;
and the phase velocity profiles for L-S and G-L theories coincide for a wave number
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Fig. 3 Variation of phase velocity of skew-symmetric modes of wave propagation (for L-S theory,
τ1 = 0, τ0 > 0, and η0 = 1, and for G-L theory, τ1 ≥ τ0 > 0, and η0 = 0)
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Fig. 4 Variation of attenuation coefficient of skew-symmetric modes of wave propagation (for L-S theory,
τ1 = 0, τ0 > 0, and η0 = 1, and for G-L theory, τ1 ≥ τ0 > 0, and η0 = 0)

ξ ≥ 2.2, (b) for n = 1, the phase velocity profiles for L-S and G-L theories coincide
for a wave number ξ ≤ 2.6 and for a wave number between 5.0 and 9.2; and the phase
velocity for the G-L theory is slightly more than in the case of the L-S theory for a
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wave number between 2.6 and 5.0, and (c) for n = 2, the phase velocity profiles for
L-S and G-L theories coincide.

9.2 Attenuation Coefficient

The variation of the attenuation coefficient with wave number for symmetric and
skew-symmetric modes of a thermo-microstretch elastic plate bordered with layers of
inviscid liquid on both sides is represented graphically in Figs. 2 and 4, respectively.

We observe the following from Fig. 2: (i) for the lowest symmetric mode, the mag-
nitude of the attenuation coefficient for the G-L theory has negligible variation with
wave number in the regions of 0.2 ≤ ξ ≤ 2.2 and 4.2 ≤ ξ ≤ 9.2, the attenuation coef-
ficient attains the value of 12.04 at ξ = 3.2 in the region of 2.2 ≤ ξ ≤ 4.2; (ii) for the
first symmetric mode, the magnitude of the attenuation coefficient for the G-L theory
has negligible variation with wave number in the region of 0.2 ≤ ξ ≤ 6.2, the attenu-
ation coefficient attains the value of 51.31 at ξ = 7.2 in the region of 6.2 ≤ ξ ≤ 8.2,
the attenuation coefficient increases sharply to 157.9 as the wave number increases
from 8.2 to 9.2; (iii) for the second symmetric mode, the magnitude of the attenuation
coefficient for the G-L theory has negligible variation with wave number in the region
of 0.2 ≤ ξ ≤ 5.2, and the attenuation coefficient attains a peak value of 63.91 at
ξ = 7.2 in the region of 5.2 ≤ ξ ≤ 9.2; (iv) for the lowest symmetric mode, the
magnitude of the attenuation coefficient for the L-S theory has negligible variation
with wave number in the regions of 0.2 ≤ ξ ≤ 1.2 and 3.2 ≤ ξ ≤ 9.2, and the
attenuation coefficient attains the highest peak value of 477.3 at ξ = 2.2 in the region
of 1.2 ≤ ξ ≤ 3.2; (v) for the first symmetric mode, the magnitude of the attenuation
coefficient for the L-S theory has negligible variation with wave number in the regions
of 0.2 ≤ ξ ≤ 2.2 and 4.2 ≤ ξ ≤ 9.2, and the attenuation coefficient attains a value
of 11.66 at ξ = 3.2 in the region of 2.2 ≤ ξ ≤ 4.2; and (vi) for the second symmetric
mode, the magnitude of the attenuation coefficient for the L-S theory has negligible
variation with wave number in the regions of 0.2 ≤ ξ ≤ 5.2 and 7.2 ≤ ξ ≤ 9.2,
and the attenuation coefficient attains a value of 19.71 at ξ = 6.2 in the region of
5.2 ≤ ξ ≤ 7.2.

From Fig. 4 it is noticed that (a) for the lowest skew-symmetric mode, the magni-
tude of the attenuation coefficient for the G-L theory have maxima up to 257.1 and
65.84 in the regions of 0.2 ≤ ξ ≤ 2.7 at ξ = 1.2 and 2.7 ≤ ξ ≤ 6.2 at ξ = 4.2,
respectively, and the magnitude of the attenuation coefficient has negligible variation
with wave number in the region of 6.2 ≤ ξ ≤ 9.2; (b) for the first skew-symmetric
mode, the magnitude of the attenuation coefficient for the G-L theory has negligible
variation with wave number in the regions of 0.2 ≤ ξ ≤ 1.2 and 5.2 ≤ ξ ≤ 9.2,
and the attenuation coefficient for the G-L theory attains values of 13.82 and 6.31 at
ξ = 2.2 and ξ = 3.2, respectively, in the region of 1.2 ≤ ξ ≤ 3.2, and the attenua-
tion coefficient attains the highest maximum value of 295.9 at ξ = 4.2 in the region
of 3.2 ≤ ξ ≤ 5.2; (c) for the second skew-symmetric mode, the attenuation coeffi-
cient for the G-L theory has negligible variation with wave number in the regions of
0.2 ≤ ξ ≤ 5.2 and 7.2 ≤ ξ ≤ 9.2, and have maxima up to 7.296 in the region of
5.2 ≤ ξ ≤ 7.2 at ξ = 6.2; (d) for the lowest skew-symmetric mode, the magnitude
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Fig. 5 Amplitude of symmetric
dilatation (e) (for L-S theory,
τ1 = 0, τ0 > 0, and η0 = 1, and
for G-L theory, τ1 ≥ τ0 > 0,
and η0 = 0)
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Fig. 6 Amplitude of
skew-symmetric dilatation (e)
(for L-S theory, τ1 = 0, τ0 > 0,
and η0 = 1, and for G-L theory,
τ1 ≥ τ0 > 0, and η0 = 0)
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of the attenuation coefficient for the L-S theory has a maximum value of 66.40 in the
region of 0.2 ≤ ξ ≤ 3.2 at ξ = 0.2, and the attenuation coefficient attains values of
29.97 and 24.97 at ξ = 4.2 and ξ = 5.2, respectively, in the region of 3.2 ≤ ξ ≤ 6.2,
and the magnitude of the attenuation coefficient has negligible variation with wave
number in the region of 6.2 ≤ ξ ≤ 9.2; (e) for the first skew-symmetric mode, the
magnitude of the attenuation coefficient for the L-S theory has negligible variation
with wave number in the regions of 0.2 ≤ ξ ≤ 1.2 and 5.2 ≤ ξ ≤ 9.2, and the
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Fig. 7 Amplitude of symmetric
microrotation (ϕθ ) (for L-S
theory, τ1 = 0, τ0 > 0, and
η0 = 1, and for G-L theory,
τ1 ≥ τ0 > 0, and η0 = 0)
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Fig. 8 Amplitude of
skew-symmetric microrotation
(ϕθ ) (for L-S theory,
τ1 = 0, τ0 > 0, and η0 = 1, and
for G-L theory, τ1 ≥ τ0 > 0,
and η0 = 0)
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attenuation coefficient attains a maximum value of 134.6 at ξ = 4.2 in the region of
3.2 ≤ ξ ≤ 5.2; and (f) for the second skew-symmetric mode, the attenuation coef-
ficient for the L-S theory has negligible variation with wave number in the region of
0.2 ≤ ξ ≤ 9.2.
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Fig. 9 Amplitude of symmetric
microstretch (ϕ∗) (for L-S
theory, τ1 = 0, τ0 > 0, and
η0 = 1, and for G-L theory,
τ1 ≥ τ0 > 0, and η0 = 0)
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Fig. 10 Amplitude of
skew-symmetric microstretch
(ϕ∗) (for L-S theory,
τ1 = 0, τ0 > 0, and η0 = 1, and
for G-L theory, τ1 ≥ τ0 > 0,
and η0 = 0)
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9.3 Amplitudes

Figures 5 and 6 depict the variations of symmetric and skew-symmetric amplitudes
of the dilatation (e) in the context of L-S and G-L theories of thermoelasticity for a
stress-free thermally insulated boundary. The dilatation (e) of the plate is a minimum
at the center and a maximum at the surfaces for the symmetric mode and zero at
the center and a maximum at the surfaces for the skew-symmetric mode as evident
from Figs. 5 and 6, respectively. Figures 7–12 show the variations of symmetric and
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Fig. 11 Amplitude of
symmetric temperature (T ) (for
L-S theory, τ1 = 0, τ0 > 0, and
η0 = 1, and for G-L theory,
τ1 ≥ τ0 > 0, and η0 = 0)
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Fig. 12 Amplitude of
skew-symmetric temperature
(T ) (for L-S theory,
τ1 = 0, τ0 > 0, and η0 = 1, and
for G-L theory, τ1 ≥ τ0 > 0,
and η0 = 0)
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skew-symmetric amplitudes of microrotation (ϕθ ), microstretch (ϕ∗), and the tem-
perature distribution (T ) in the context of L-S and G-L theories of thermoelasticity
for a stress-free thermally insulated boundary. It is evident from Figs. 7–12 that the
values of microrotation (ϕθ ),microstretch (ϕ∗), and the temperature distribution (T )
of the plate show minima at the center and maxima at the surfaces for the symmet-
ric mode and zero at the center and maxima at the surfaces for the skew-symmet-
ric mode. (e)sym, (e)asym, (ϕθ )sym, (ϕθ )asym, (ϕ

∗)sym, (ϕ
∗)asym, (T )sym, and (T )asym

123



Int J Thermophys (2009) 30:2122–2143 2143

correspond to the values of (e), (ϕθ ), (ϕ∗), and (T ) for symmetric and skew-sym-
metric modes, respectively. It is observed that the behavior and trend of variations of
(e)sym, (ϕθ )sym, (ϕ

∗)sym, and (T )sym are the same, whereas the behavior and trend of
variations of (e)asym, (ϕθ )asym, (ϕ

∗)asym, and (T )asym are similar. The values of the
dilatation, microstretch, and temperature distribution of the plate for the case of the
G-L theory are less in comparison to the L-S theory for symmetric and skew-symmet-
ric modes. The values of the microrotation (ϕθ ) of the plate are the same in the case of
L-S and G-L theories of thermoelasticity for symmetric and skew-symmetric modes.

10 Conclusions

(i) The elastodynamic behavior of waves in a thermo-microstretch elastic homo-
geneous isotropic plate bordered with layers of inviscid liquid on both sides
subjected to stress-free thermally insulated and isothermal conditions is inves-
tigated.

(ii) At the short-wavelength limit, the secular equations for symmetric and skew-
symmetric wave modes reduce to the Rayleigh surface wave frequency equation.

(iii) The phase velocities of higher modes of propagation, symmetric, and skew-
symmetric attain quite large values at a vanishing wave number which sharply
decreases to become steady and asymptotic with increasing wave number.

(iv) The values of dilatation, microrotation, microstretch, and temperature distri-
bution of the plate are minima at the center and maxima at the surfaces for
the symmetric mode and zero at the center and maxima at the surfaces for the
skew-symmetric mode.

(v) The values of the dilatation, microstretch, and temperature distribution of the
plate in the case of the G-L theory are less in comparison to the L-S theory for
symmetric and skew-symmetric modes.

(vi) The values of the microrotation of the plate are the same for both L-S and G-L
theories of thermoelasticity for symmetric and skew-symmetric modes.
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